Process Parameter Optimization for Minimizing Springback in Cold Drawing Process of Seamless Tubes Using Advanced Optimization Algorithms

Document Type : Regular Article

Authors

1 Research Scholar, Sinhgad College of Engineering, Vadgaon, Pune, M.S., India

2 Registrar, Dr. Babasaheb Ambedkar Technological University, Lonere, M.S., India

3 Former Director, R and D Department, I.S.M.T. Limited, Ahmednagar, M.S., India

Abstract

In tube drawing process, a tube is pulled out through a die and a plug to reduce its diameter and thickness as per the requirement. Dimensional accuracy of cold drawn tubes plays a vital role in the further quality of end products and controlling rejection in manufacturing processes of these end products. Springback phenomenon is the elastic strain recovery after removal of forming loads, causes geometrical inaccuracies in drawn tubes. Further, this leads to difficulty in achieving close dimensional tolerances. In the present work springback of EN 8 D tube material is studied for various cold drawing parameters. The process parameters in this work include die semi-angle, land width and drawing speed. The experimentation is done using Taguchi’s L36 orthogonal array, and then optimization is done in data analysis software Minitab 17. The results of ANOVA shows that 15 degrees die semi-angle,5 mm land width and 6 m/min drawing speed yields least springback. Furthermore, optimization algorithms named Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Genetic Algorithm (GA) are applied which shows that 15 degrees die semi-angle, 10 mm land width and 8 m/min drawing speed results in minimal springback with almost 10.5 % improvement. Finally, the results of experimentation are validated with Finite Element Analysis technique using ANSYS.

Highlights

Google Scholar

Keywords

Main Subjects


[1]     Karanjule DB, Bhamare SS, Rao TH, Mitra AC. Implementation of Taguchi Method for Parametric Optimization of Springback in Cold Drawing of Seamless Tubes. Int Rev Mech Eng 2017;11:373. doi:10.15866/ireme.v11i6.12850.
[2]     Liao Y-S, Chen S-T, Lin C-S. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J Micromechanics Microengineering 2005;15:245–53. doi:10.1088/0960-1317/15/2/001.
[3]     Spedding T., Wang Z. Study on modeling of wire EDM process. J Mater Process Technol 1997;69:18–28. doi:10.1016/S0924-0136(96)00033-7.
[4]     Tosun N, Pihtili H. The Effect of Cutting Parameters on Wire Crater Sizes in Wire EDM. Int J Adv Manuf Technol 2003;21:857–65. doi:10.1007/s00170-002-1404-1.
[5]     Hosseinzadeh M, Mouziraji MG. An analysis of tube drawing process used to produce squared sections from round tubes through FE simulation and response surface methodology. Int J Adv Manuf Technol 2016;87:2179–94. doi:10.1007/s00170-016-8532-5.
[6]     Su C-T, Tong L-I. Multi-response robust design by principal component analysis. Total Qual Manag 1997;8:409–16. doi:10.1080/0954412979415.
[7]     Mandal N, Doloi B, Mondal B, Das R. Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and Regression analysis. Measurement 2011;44:2149–55. doi:10.1016/j.measurement.2011.07.022.
[8]     Choudhury S., Appa Rao IV. Optimization of cutting parameters for maximizing tool life. Int J Mach Tools Manuf 1999;39:343–53. doi:10.1016/S0890-6955(98)00028-5.
[9]     Dingal S, Pradhan TR, Sundar JKS, Choudhury AR, Roy SK. The application of Taguchi’s method in the experimental investigation of the laser sintering process. Int J Adv Manuf Technol 2008;38:904–14. doi:10.1007/s00170-007-1154-1.
[10]    Antony J. Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal components analysis. Qual Reliab Eng Int 2000;16:3–8.
[11]    Singh H, Kumar P. Optimizing feed force for turned parts through the Taguchi technique. Sadhana 2006;31:671–81. doi:10.1007/BF02716887.
[12]    Lan T-S, Wang M-Y. Competitive parameter optimization of multi-quality CNC turning. Int J Adv Manuf Technol 2009;41:820–6. doi:10.1007/s00170-008-1495-4.
[13]    Gopalsamy BM, Mondal B, Ghosh S. Taguchi method and ANOVA: An approach for process parameters optimization ofhard machining while machining hardened steel. J Sci Ind Res (India) 2009;68:686–95.
[14]    Loharkar PK, Pradhan MK. Modeling and Analysis of Cold Drawing Process. Handb. Res. Manuf. Process Model. Optim. Strateg., IGI Global; 2017, p. 40–53. doi:10.4018/978-1-5225-2440-3.ch003.
[15]    Kadi R V, Dundur ST. Optimization of dry turning parameters on surface roughness and hardness of Austenitic Stainless steel (AISI316) by Taguchi Technique. J Eng Fundam 2015;2:30–41. doi:10.17530/jef.15.14.2.2.
[16]    Koksal S, Ficici F, Kayikci R, Savas O. Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi’s method. Mater Des 2012;42:124–30. doi:10.1016/j.matdes.2012.05.048.
[17]    Kanlayasiri K, Boonmung S. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. J Mater Process Technol 2007;192–193:459–64. doi:10.1016/j.jmatprotec.2007.04.085.
[18]    Sanchez JA, Rodil JL, Herrero A, de Lacalle LNL, Lamikiz A. On the influence of cutting speed limitation on the accuracy of wire-EDM corner-cutting. J Mater Process Technol 2007;182:574–9. doi:10.1016/j.jmatprotec.2006.09.030.
[19]    Ramakrishnan R, Karunamoorthy L. Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 2006;29:105–12. doi:10.1007/s00170-004-2496-6.
[20]    Hsiao YF, Tarng YS, Huang WJ. Optimization of Plasma Arc Welding Parameters by Using the Taguchi Method with the Grey Relational Analysis. Mater Manuf Process 2007;23:51–8. doi:10.1080/10426910701524527.
[21]    Liao YS, Huang JT, Su HC. A study on the machining-parameters optimization of wire electrical discharge machining. J Mater Process Technol 1997;71:487–93. doi:10.1016/S0924-0136(97)00117-9.
[22]    Fung C-P, Kang P-C. Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. J Mater Process Technol 2005;170:602–10. doi:10.1016/j.jmatprotec.2005.06.040.
[23]    Walia RS, Shan HS, Kumar P. Multi-Response Optimization of CFAAFM Process Through Taguchi Method and Utility Concept. Mater Manuf Process 2006;21:907–14. doi:10.1080/10426910600837814.
[24]    Aggarwal A, Singh H, Kumar P, Singh M. Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique—A comparative analysis. J Mater Process Technol 2008;200:373–84. doi:10.1016/j.jmatprotec.2007.09.041.
[25]    Wu Z, Shamsuzzaman M, Pan ES. Optimization design of control charts based on Taguchi’s loss function and random process shifts. Int J Prod Res 2004;42:379–90. doi:10.1081/00207540310001614169.