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Many parts of spacecraft, airplanes are made up of 

aluminum, due to its property of less density, which is deep 

in sections. For the analysis of deep parts of any structure, a 

shear deformation theory using the trigonometric sinusoidal 

function in displacement field in terms of thickness 

coordinate is developed to obtain the shear deformation 

effects. The shear stresses are obtained from the use of 

constitutive equations with outstanding accuracy, satisfying 

the zero shear stress at the both, top and bottom of beams. 

Also, the theory not requires the shear correction factor. By 

using the principle of virtual work, the governing differential 

equations and boundary conditions are obtained. A deep 

aluminum beam is assumed subjected to a cosine load for the 

analytical study to show the accuracy of the theory. The 

results are compared with other theories. 
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1. Introduction 

Euler-Bernoulli theory disregards the property of the shear deformation and heavy stress 

concentration hence it is applicable for thin beams only. As the theory neglect the shear 
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deformation, and it is more pronounced in the case of deep beams. Hence it is essential to 

address the shear deformation effects. 

Timoshenko [1] considered a prismatic bar to investigate the effect of transverse vibration. This 

theory is known as first-order shear deformation theory (FSDT) and Timoshenko theory in the 

literature. The shear strain is assumed to be constant through the thickness of the beam and thus 

requires shear correction factor. 

Cowper [2] has denied an expression for the shear correction factor for various cross-sections of 

the beam. The discrepancies in the elementary theory of beam and first-order shear deformation 

theories; various higher order shear deformation theories were developed and available in the 

literature for static and dynamic analysis of beams. Krishna Murthy [3], Baluch et al. [4], A 

parabolic shear deformation theory is developed by Bhimaraddi and Chandrashekhara [5] 

assuming a variety of axial displacement. These theories satisfy shear stress conditions on both 

faces of the beam and thus no need of shear correction factor.  

Dahake and Ghugal [6] studied flexural analysis of thick beam having simple supports using 

trigonometric shear deformation theory. Ghugal and Dahake [7,8] given the flexural solution for 

the beam subjected to parabolic loading. Sawant and Dahake [9] developed the new hyperbolic 

shear deformation theory. Chavan and Dahake [10,11] presented clamped-clamped beam using 

hyperbolic shear deformation theory.  The displacement and stresses for the thick beam given by 

Nimbalkar and Dahake [12].  

Jadhav and Dahake [13] presented bending analysis of deep cantilever beam using steel as a 

material. Manal et al. [14] investigated the deep fixed beams using new displacement field. Patil 

and Dahake [15] carried out finite element analysis using 2D plane stress elements for the thick 

beam. Dahake et al. [16] studied the flexural analysis of thick fixed beam subjected to cosine 

load. Tupe et al. [17] compared various displacement fields for static analysis of thick isotropic 

beams. 

In available research, most of the researchers have used steel as a beam material. As many parts 

of the spacecraft, airplane structures are made up of aluminum due to its low weight density. In 

this research, an attempt has been made to analyze the aluminum deep cantilever beam subjected 

to cosine load. 

2. Development of theory 

The assumed beam is made up of homogeneous and isotropic material which occupies in 

zyx 0  the Cartesian coordinate system the region: 
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0 ; 0 ; / 2 / 2x L y b h z h        

where x, y, z = Cartesian coordinates, 

L, b = length, and width of the beam in the x and y directions, respectively, and 

h = thickness of the beam in the z-direction. 

2.1 Displacement field used 

The displacement field used as follows: 

( , ) sin ( ) ( , ) ( )
dw h z

u x z z x and w x z w x
dx h






   
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Where, u and w = axial and transverse displacements respectively.  
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2.2. Boundary conditions and governing equations 

The variationally consistent governing differential equations and boundary conditions for the 

beam under consideration are mentioned below using the expressions for strains and stresses (2) 

through (4) and using the principle of virtual work; it leads to: 

 
.

/2

0 /2 0
( ) 0x x zx zx

x L z h x L

x z h x
b dxdz q x wdx    

  

  
      (5) 

Where,   = variational operator.  

Employing Green’s theorem in Eqn. (4) successively, we obtained the coupled Euler-Lagrange 

equations which are the governing differential equations and associated boundary conditions of 

the beam.  
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Moreover, associated consistent natural boundary conditions obtained are as follows:  

At x = 0 and x = L 

0
2

2

 w
dx

d
EI

dx

wd
EI


 (8) 

2.3. General solution of equilibrium equations 

Using Eqns. (6) and (7), we get w(x) and  (x) 

 3 2

3 3 2

24 Q xd w d

dx dx EI




   (9) 

where Q(x) = generalized shear force for beam. 

The second governing Eqn. (7) is also rearranged as follows: 

3 2

3 24
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 (10) 

Using Eqns. (11) and (12), we obtained  as: 
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where constants  ,   and  in Eqns. (10) and (11) are as follows 
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The general solution of Eqn. (11) is obtained as follows: 

2 3

( )
( ) cosh sinh

Q x
x C x C x

EI
  


    (12) 

The equation of w(x) is obtained by substituting the expression of  (x) in Eqn. (12) and then 

integrating it thrice with respect to x.  
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The solution for w(x) is obtained as follows: 

 
3 2

21
2 3 4 5 63

( ) sinh cosh
6 4 2

C x EI x
EI w x q dx dx dx dx C x C x C C x C
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     (13)

 where, 1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and can be obtained by imposing natural 

(static) and / or geometric or kinematical end conditions of the beam. 

3. Illustrative example 

To establish the effectiveness of the theory, a numerical example is assumed. For the static a 

rectangular deep cross-section, having span ‘L’, width ‘b’ and thickness ‘h’ of elastic material is 

considered. The following material properties for beam are used. 

Table 1 

Properties of aluminum 6061-T6, 6061-T651 [18]. 

Physical Properties Quantity 

Density 2700 kg/m
3
 

Ultimate Tensile Strength 310 MPa 

Modulus of Elasticity 68.9 GPa 

Notched Tensile Strength 324 MPa 

Ultimate Bearing Strength 607 MPa 

Bearing Yield Strength 386 MPa 

Poisson’s Ratio 0.33 

 

3.1. Example: A clamped beam subjected to cosine load
 

The beam has its origin at x = 0 and free at x = L. The load acting as shown in Fig. 2, on surface z 

= +h/2 acting in the downward z-direction. 

http://asm.matweb.com/search/GetUnits.asp?convertfrom=43&value=2.7
http://asm.matweb.com/search/GetUnits.asp?convertfrom=109&value=324
http://asm.matweb.com/search/GetUnits.asp?convertfrom=109&value=607
http://asm.matweb.com/search/GetUnits.asp?convertfrom=109&value=386


76 P. Kapdis et al./ Journal of Soft Computing in Civil Engineering 2-1 (2018) 71-84 

 
 

Fig. 2. Beam subjected to cosine load. 

Associated boundary conditions for the above beam are: 

At free end:
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The expressions obtained in general form for  w x  and  x  are as: 
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The stresses and axial displacement are obtained using the above solutions are as follows 

L 

 

x, u 

q0 

z, w 
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4. Results 

4.1. Numerical Results 

In the present research, the results for displacements, (axial, transverse and inplane) also, stresses 

are investigated. The results are presented in the non-dimensional form. 

3

4

0 0 0 0

10
, , ,x zx

x zx

b bEbu Ebh w
u w

q h q L q q

 
      

The shear stresses ( zx ) are obtained directly by using constitutive relation and equilibrium 

equation of two-dimensional elasticity and are denoted by ( CR

zx ) and ( EE

zx ) respectively. It 

satisfies the stress-free conditions on the top  / 2z h  and bottom  / 2z h   faces of the 

beam. 
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Table 2 

Axial Displacement ( u ) at (x = L, z = h/2), Deflection ( w ) at (x = L, z =0.0) Bending Stress ( x ) at (x 

= 0, z = h/2), Shear Stresses CR

zx (x=0.01L, z = 0) and EE

zx (x, z = 0) of the Beam for Aspect Ratio 4 

and 10. 

Source Aspect ratio Model u  w  x  
CR

zx  EE

zx  

Present 

4 

TSDT -67.5989 6.1819 36.7529 1.8181 -2.7877 

Sawant and Dahake [9] HPSDT -70.024 6.1928 39.8104 2.1609 -4.5581 

Krishna Murty[3] HSDT -71.2291 6.1860 37.2887 1.9004 -2.8916 

Timoshenko [1] FSDT 23.1543 6.5444 22.2081 0.3076 3.7597 

Bernoulli-Euler ETB 23.1543 5.7541 22.2081 — 3.7597 

Present 

10 

TSDT -1055.4548 5.8244 176.7877 7.7501 3.2052 

Sawant and Dahake [9] HPSDT -1061.5175 5.8256 178.4137 8.3023 3.8042 

Krishna Murty[3] HSDT -1064.5122 5.8255 172.1017 7.8208 3.7523 

Timoshenko [1] FSDT 361.7856 5.8805 138.8010 4.8073 9.3993 

Bernoulli-Euler ETB 361.7856 5.7541 138.8010 — 9.3993 

 

 
Fig. 2. Variation of u  through the thickness of the beam for aspect ratio 4. 
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Fig. 3. Variation of u  through the thickness of the beam for aspect ratio 10. 

 

 

 
Fig. 4. Variation of a maximum w  of the beam with aspect ratio S. 
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Fig. 5. Bending stress ( x ) through the thickness at (x= 0, z) for aspect ratio 4. 

 

 

 

 

Fig. 6. Bending stress ( x ) through the thickness at (x= 0, z) for aspect ratio 10. 
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Fig. 7. Shear stress ( zx ) through the thickness at (x = 0.01L, z) obtain using CR for aspect ratio 4. 

 

 

 

 

Fig. 8. Shear stress ( zx ) through the thickness at (x = 0.01L, z) obtain using CR for aspect ratio 10. 
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Fig. 9. Shear stress ( zx ) through the thickness at (x = 0.01L, z) obtain using EE for aspect ratio 4. 

 

 

 

 

Fig. 10. Shear stress ( zx ) through the thickness of beam at (x = 0, z) obtain using EE for aspect ratio 10. 
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deformation theories. Also, the for a cantilever beam with cosine load, transverse shear stress and 

its distribution through the thickness of beam obtained using constitutive relation is in close 

agreement with that of other higher order refined theories; however, it cannot predict the effect of 

stress concentration at the built-in end of the beam. By using the equilibrium equation of two-

dimensional elasticity, the effect of stress concentration is exactly predicted. 

References 

[1] Timoshenko SP. LXVI. On the correction for shear of the differential equation for transverse 

vibrations of prismatic bars. London, Edinburgh, Dublin Philos Mag J Sci 1921;41:744–6. 

doi:10.1080/14786442108636264. 

[2] Cowper GR. The Shear Coefficient in Timoshenko’s Beam Theory. J Appl Mech 1966;33:335. 

doi:10.1115/1.3625046. 

[3] K MA V. Vibration of Short Beams. AIAA J 1970;8:34–8. 

[4] Baluch MH, Azad AK, Khidir MA. Technical Theory of Beams with Normal Strain. J Eng Mech 

1984;110:1233–7. doi:10.1061/(ASCE)0733-9399(1984)110:8(1233). 

[5] Bhimaraddi A, Chandrashekhara K. Observations on Higher‐Order Beam Theory. J Aerosp Eng 

1993;6:408–13. doi:10.1061/(ASCE)0893-1321(1993)6:4(408). 

[6] Dahake AG, Ghugal YM. Flexure of Thick Simply Supported Beam Using Trigonometric Shear 

Deformation Theory. Int J Sci Res Publ 2012;2:1–7. 

[7] Ghugal YM, Dahake AG. Flexural analysis of deep beam subjected to parabolic load using refined 

shear deformation theory. Appl Comput Mech 2012;6:163–72. 

[8] Ghugal YM, Dahake AG. Flexure of thick beams using refined shear deformation theory. Int J Civ 

Struct Eng 2012;3:321–35. 

[9] Sawant MK, Dahake AG. A new hyperbolic shear deformation theory for analysis of thick beam. 

Int J Innov Res Sci Eng Technol 2014;3:9634–43. 

[10] Chavan VB, Dahake AG. Analysis of Thick Beam Bending Problem by Using a New Hyperbolic 

Shear Deformation Theory. Int J Eng Res Gen Sci 2014;2:209–15. 

[11] B. C V., G. DA. A Refined Shear Deformation Theory for Flexure of Thick Beam. Int J Pure Appl 

Res Eng Technol 2015;3:109–19. 

[12] Nimbalkar VN, Dahake AG. Displacement and Stresses for Thick Beam using New Hyperbolic 

Shear Deformation Theory. Int J Pure Appl Res Eng Technol 2015;4:120–30. 

[13] Jadhav VA, Dahake AG. Bending Analysis of Deep Beam Using Refined Shear Deformation 

Theory. Int J Eng Res 2016;5:526–31. 

[14] S. MS, M. SR, G. DA. A New Trigonometric Shear Deformation Theory for Thick Fixed Beam. Int 

J Eng Res 2016;5:532–6. 

[15] B. PP, G. DA. Finite Element Analysis Using 2D Plane Stress Elements for Thick Beam. J Aerosp 

Eng Technol 2016;6:1–8. 

[16] G. DA, S. MS, M. SR. Flexure of Fixed Thick Beam using Trigonometric Shear Deformation 

Theory. Proc. 6th Int. Congr. Comput. Mech. Simulation, Indian Inst. Technol. Powai Maharashtra, 

India, 2016, p. 1112–5. 



84 P. Kapdis et al./ Journal of Soft Computing in Civil Engineering 2-1 (2018) 71-84 

[17] A.G. Dahake D. H. Tupe GRG. COMPARISON OF VARIOUS DISPLACEMENT FIELDS FOR 

STATIC ANALYSIS OF THICK ISOTROPIC BEAMS. Struct. Eng. Conv. CSIR-SERC, Chennai, 

INDIA. 21-23, 2016, p. 468–72. 

[18] Properties of Aluminum 6061-T6, 6061-T651 n.d. http://www.aerospacemetals.com. 

 


	1. Associate Professor and Head, Civil Engineering Department, Maharashtra Institute of Technology, Aurangabad (M. S.), India
	2. Civil Engineering Department, Shreeyash College of Engineering and Technology, Aurangabad, (M. S.), India
	Corresponding author: ajaydahake@gmail.com
	1. Introduction
	2. Development of theory
	2.1 Displacement field used
	2.2. Boundary conditions and governing equations
	2.3. General solution of equilibrium equations

	3. Illustrative example
	3.1. Example: A clamped beam subjected to cosine load

	Associated boundary conditions for the above beam are:
	At free end: at x = L
	and at fixed end: = 0 at x = 0
	The expressions obtained in general form for  and  are as:
	The stresses and axial displacement are obtained using the above solutions are as follows
	4. Results
	4.1. Numerical Results

	5. Conclusions
	References

