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A common structural design optimization problem is weight 

minimization which is done by choosing a set of variables 

that represent the structural or the architectural configuration 

of the system satisfying few design specific criterion. In 

general, genetic algorithms (GAs) are ideal to be used for 

unconstrained optimization, so it is required to transform the 

constrained problem into an unconstrained one. A violation 

of normalized constraints-based formulation method has 

been used in the present work for this purpose. A modified 

algorithm has been developed in C++ using concept of 

genotypes for optimization using discreet design variable. A 

detailed analysis of optimization of a simple steel truss with 

discrete design variables using different variations of genetic 

algorithm is presented here. Also, an attempt has been made 

to study the sensitivity of the algorithm with respect to the 

optimization operators i.e., initial population size, rate of 

mutation. 
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1. Introduction 

The purpose of the optimization in steel structural design is to determine the optimal cross-

sectional area and minimum material consumption for the members considering all other 
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constraints. In practice, it is often desirable that the design variables (such as cross-sectional 

areas of the member and shape of rolled section) should be chosen from commercially available 

shape and sizes by the manufacturer. In many cases, the use of an optimization procedure will 

lead to commercially non-available sizes and any attempt to stop gap those values by the closest 

available commercial sizes can make the design unfeasible and unnecessarily heavier. The 

desirable stress of an efficient steel truss are based on the minimizing the weight of the structure 

and keeping the stress on each member under the limits of maximum stress and respective Euler 

buckling constraint. The optimum design of steel structure subjected to external load is topology 

dependent and is considered as constrained optimization problem. Weight minimization of 

structures exposed to stress and displacement constraint is a typical design issue. The design 

variables can be discrete or potentially continuous and the consideration of the previous one 

makes the issue harder. Practically, it is desirable to choose design variables which are 

commercially easily accessible. However, the utilization of a continuous optimization procedure 

will result in commercially non-accessible sizes and any endeavor to roundoff those values by 

the nearest accessible commercial sizes could make the design unfeasible or uneconomical. 

Genetic algorithm is based on fundamentals of natural evolution of Darwin’s theorem. It is an 

optimization technique most popular due to its simple mathematics and work with fitness and 

penalties and can handle the continuous and discrete variables. Goldberg and Samtani [1] applied 

genetic algorithms in optimization of structures. Rajeev and Krishnamoorthy [2] studied GAs in 

discrete structural optimization of trusses and found out that GAs are suitable for structural 

optimization since they handle discrete variables efficiently. The improved augmented 

Lagrangian GA was presented by Adeli [3] as a robust hybrid algorithm for optimization of space 

structures using the augmented Lagrangian method. Hajela and Lee [4] investigated the 

application of GA in topological optimization problems and applied its techniques to trusses for 

stress, buckling, and displacement constraints, showing that the genetic search procedure is a 

good exploratory tool to evaluate topologies in a discontinuous design space. Additional 

information on the improvement procedure that produces the structural design from the genotype 

(a string of bits) and furthermore the fitness assessment procedure of every candidate design is 

presented in Angeline P. [5]. Chen [6] used GA is an automated design tool with increasing the 

efficiency by reliability and accuracy of the methodology for code-based design of structures. 

Deb and Gulati [7] used real-coded genetic algorithms (RCGAs), with specialized reproduction 

operators, for sizing, topology, and layout optimization of planar and spatial truss structures. 

Consolidating completely stressed design optimization and conjugate slope methods, shape and 

cross-segment optimization of trusses is discussed in Gil and Andreu [8]. Krishnamoorthy et al. 

[9] used an object-oriented framework for GAs in optimization of spatial trusses. Gupta, Ranjan 

Kumar et al. [10] has shown transformation methods for GA on constrained problems in their 

work. Azad et al. [11] proposed a mutational based real coded genetic algorithm for sizing and 

layout optimization of truss with fixed topology and presented classical weight minimization 

problems of truss structures. Cazauca and Gram [12] proposed a general parameterization and 
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encoding technique to optimize the topology, size and shape of any plane truss by genetic 

algorithm and finite elements method. They claimed penalty function have great capabilities to 

express the constraints violations of the solution and leads to faster solution. Weight optimization 

of plane truss is carried out by Neeraja et al [13] by using GA. Hosseni [14] found the shear 

capacity of a beam retrofitted by fiber reinforced polymer (FRP) with the help of GA to train the 

network of artificial neural network. Ede et al [15] presented the analysis of a simple genetic 

algorithm optimized steel structure, according to BS 5950. Lopes [16] applied genetic algorithm 

to minimize the concrete volume in foundation. They demonstrated that advanced optimization 

techniques can be used as auxiliary tools in structural design and concluded that the considerable 

reduction of volume of concrete is achieved. 

In the present study, a Genetic Algorithm which is inspired from the work of Goldberg and 

Samtani [1] has been used to optimize a simple steel truss. As the problem is of discreet design 

variables, the GA has been modified and developed using concept of genotypes [5]. Also, as the 

truss optimized is constrained, therefore a violation of normalized constraints-based formulation 

for transformation has been used in this paper. The penalty parameter depends on the degree of 

constraint violation, which is found to be well suited for a parallel search using genetic 

algorithms [10]. After the development of the suitable GA, it has been analyzed with respect to 

the different optimization parameters (cross-over methods, rate of mutation) to figure out the 

fastest method. 

2. Genetic algorithm 

In a Genetic Algorithm (GA), a predetermined number (a population) of strings(chromosomes) 

which encode candidate solutions evolves toward a better solution. Genetic algorithms were 

initially proposed by John Holland at the University of Michigan. 

GAs are computationally straightforward and simple, however powerful in their search for 

optimization. Additionally, they are not constrained by prohibitive assumptions of their search 

space. GAs are searching systems based over the idea of genetics and natural selection. They 

utilize the idea of natural selection with genetic operators inspired from nature to build vigorous 

and powerful search system. GAs vary in various perspectives. Goldberg [5] discusses them in 

detail. 

The different genetic operators that have been distinguished are: reproduction, mutation, 

speciation, dominance, inversion, deletion, migration, intra-chromosomal duplication, crossover, 

translocation, segregation, and sharing. Contingent upon the type of the problem and on the 

prerequisites for performance of the algorithm, GAs can be improved by applying increasingly 

more of these operators. However, the most straightforward GAs work by utilizing reproduction, 

crossover and mutation in variable proportions to give the ideal result. 



98 P. Kumar et al./ Journal of Soft Computing in Civil Engineering 5-1 (2021) 95-108 

 

A generic GA can be stated as: 

begin 

Introduce the populace P 

Assess each string in the populace 

repeat 

repeat 

Select at least 2 individuals in P 

Apply recombination operators with probability pc 

Apply mutation operator with rate pm 

Add new individuals in P’ 

until (population P’ complete) 

Assess individuals in population P’ 

P <- P’ 

until (termination criteria) 

stop 

end 

 
Fig. 1. Flowchart for a typical Genetic Algorithm. 

2.1. Procedures in the present work 

The methodology of GAs used in this paper is explained below: 
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2.1.1. The coding procedure 

All variables linked to candidate solution encoded in chromosome. In this paper we utilized the 

binary coding (0 or 1). 

2.1.2. The selection scheme 

In this paper, a rank-based selection procedure has been adopted. This selection procedure begins 

by arranging the given populace as indicated by the value of the fitness function and positioning 

them appropriately. Individual in the populace were then chosen so that high ranking individuals 

had a higher possibility of being picked for reproduction. We likewise followed Elitism (the top 

10% of the populace are constantly duplicated into the next generation directly). This prompted 

an intermediate populace whose components would then be worked upon. 

2.1.3. The recombination operators 

The recombination had been cultivated here utilizing three crossover operators – random parent 

selection, one-point and two-point. The recombination activity is for the most part done with a 

user defined probability (pc) and with probability (1-pc), activity isn't performed and the two 

parents are simply replicated and forwarded for mutation step. 

2.1.4. The mutation operator 

Mutation operator was acquainted to regenerate the errors that might have emerged during 

duplication procedure. With given mutation rate (low) the mutation operator was applied to each 

bit in the child chromosomes. If there should be an occurrence of binary digits, the impact of this 

operator is basic: simply change a 0 into a 1 and the other way around. 

2.1.5. The evaluation step 

After a new populace has been made, every solution must be assessed so as to have a fitness 

values assigned to it. 

Despite the fact that these operators look basic, their joined activity is liable for a lot of GAs 

power. From computer programming perspective, they include random-number generation, 

string-replicating, and halfway string-swapping. 

2.2. Genotypes 

For discrete design variable, a list of values for the variable is given. There are 16 unique values 

and 7 design variables (cross sectional area of 7 members). design member connection is done 

ere by accepting equal cross section area for 1-7;2-6; and 3-5. 

 
Fig. 2. Individual String (Chromosome). 
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2.3. Crossover methods 

In the following paragraphs we will discuss the Crossover Methods used in this paper. 

2.3.1. Single point crossover 

Here, a random point of crossover is taken and tails or the heads of the 2 parents are exchanged 

to obtain new off-springs. 

 
Fig. 3. Pictorial representation of Single Point Cross-over. 

2.3.2. Multi point crossover 

In Multi point crossover more than one random crossover points are selected and the alternating 

segments are exchanged to obtain new off-springs. 

 
Fig. 4. Pictorial representation of Multi Point Cross-over. 

2.3.3. Uniform crossover 

Here, we don't separate the parent chromosome into fragments, instead we treat every gene as a 

fragment. In this, for every gene we randomly decide if it'll be included in the off-spring. We can 

likewise attribute this randomness to one parent. 

 
Fig. 5. Pictorial representation of Uniform Cross-over. 
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2.4. Mutation 

It is characterized as a random change in the chromosome, to obtain another solution or derived 

chromosome. It is utilized to present assorted variety in the genetic populace and is typically 

used with lesser probability. It is discovered that mutation is fundamental for the GA’s 

convergence. 

2.4.1. Bit flip mutation 

Here, we select at least 1 bit at random and flip them. This is utilized in binary encoded GAs. 

This is the mutation method which has been used in this paper. 

 
Fig. 6. Pictorial representation of Bit Flip Mutation. 

The genetic algorithm rehashes a similar procedure again and again by creating new populace 

and assessing its fitness. In spite of the fact that there are numerous random activities in GA's, 

they don't discover the solution randomly. 

For each new "child "solution for be created, a pair of "parent" solution is chosen. A "child" 

solution is created utilizing genetic operators, which normally shares huge numbers of the 

attributes of its "parents". Now, new parents are chosen from each new child, and the procedure 

proceeds until another populace of arrangements of appropriate size is produced. The normal 

fitness of the new generations is relied upon to be higher than that of the past generations, as the 

best individual of the last generations have been given higher possibilities for breeding. The 

algorithm will end when either the most extreme number of generations given has been 

produced, or a satisfactory fitness level has been accomplished for the populace. 

3. Optimization of steel truss 

3.1. Example problem 

We have considered a simple three-bar truss as shown in Fig. 1 to explain the optimization 

procedure. The data for the truss are: Maximum stress (σM) = ±147.15 MPa, density d = 7.85 x 

103 kg/m
3
; modulus of elasticity E = 2.008 x 10

5
 MPa; and Euler buckling constraint (σE) = 

±4EA/L
2
. We need to get optimum c/s area of the truss members 1, 2, 3 and 4(fig.1) for the given 

loading conditions and assuming the self-weight of each member is distributed equally and 

applied on both ends of the member. Mathematically: minimize f(x) for gj{x) < 0, j = 1,2,3, . . . 

where, j is the number of constraints. 
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Fig. 7. Steel Truss to be optimized. 

3.1.1. Mathematical formulation 

f(x)=∑ dAjLj 

where Aj = the c/s area of j
th

 member; Lj = length of j
th

 member; 

d = the weight density of material; 

σj<σM, for j = 1, 2, 3 

σj<σEj, for j = 1, 2, 3 

where σj = stress in member j; σM = allowable stress and σEj= Euler Buckling constraint of 

member j. 

In this problem, we cannot describe all the constraints in terms of the design variables; because 

they are implicit and their evaluation would require analysis of the truss structure. We know that, 

Genetic algorithms works better for unconstrained problems and as the presented problem here is 

a constrained one, it is required to transform it into an unconstrained one, so it could be 

optimized using GAs. 

(σj / σM)- 1< 0; and (σj /σEj) -1 < 0 

A violation coefficient C is given as: if gi(x) > 0, then ci = gj(x); or if gi(x) <= 0, then ci = 0, 

and C = ∑ cj 

Now the modified objective function ф(x) is written as 

ф(x) =f(x) (1 + KC) 

K=10 in this paper. 
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Now ф(x) will be the fitness function (or objective function) for our Genetic Algorithm which 

will be used to carry out the unconstrained optimization. In our case we are going to terminate 

the algorithm when the fitness values of the fitness function reach a satisfactory level and 

becomes consistent. We check for the concurrence of the fitness values for at least 10 

consecutive generations as a mark for terminating the algorithm. 

Our fitness function also becomes equal to the weight of the truss when none of the members are 

under stress that is beyond the limiting stress or the Euler Buckling constraint. Thus, for the final 

result to be stable and feasible, the value of the fitness function must be equal to the value of the 

weight of the truss structure. 

3.2. Optimization of the problem using different variations of genetic algorithm in the 

present work 

1. The first program follows a uniform crossover GA in which every new offspring is made by 

randomly selecting the parent from which the gene is taken. The mutation rate was kept at 2% 

and 10% elitism was followed. 

2. The second program follows two-point (multi) crossover between the fifth and eleventh 

indices. The mutation rate was kept at 2% and 10% elitism was followed. 

3. The third program was written using single point crossover after the seventh index of the 

chromosome and taking a mutation rate of 2% and elitism was kept at 10%. 

4. The fourth program follows multi-point crossover between the fifth and eleventh indices. The 

mutation rate was varied to see its effect on the number of generations required for optimal 

solution. 

4. Results 

4.1. Using uniform crossover 

Parameters used: 

Stress limit = 147.150 MPa 

Modulus of Elasticity = 2.008 x 105 MPa 

Density = 7.85 kg/m3 

Length of the base member = 5.0 m 

Constraint Violation penalty constant = 10 

Force on Joint 3 = 100 N 

Mutation rate = 2% 

Elitism = 10% 

 

The optimal solution came out to be: 
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Table 1 
Optimal Solution using uniform crossover. 

A1 (cm
2
) A2 (cm

2
) A3 (cm

2
) A4 (cm

2
) Weight(kg) 

3.4 2.4 2.4 2.8 753.6 

 

 
Fig. 8. Variation in number of generations to achieve optimal solution with population size using uniform 

crossover. 

As we can see, when we used the Uniform crossover for various population sizes, the number of 

generations taken to get the optimal solution for different initial population sizes varies 

exponentially. As we go on decreasing the population size the number of generations increases 

first gradually then with a very quick pace. 

4.2. Using multi point crossover 

Parameters used: 

Stress limit = 147.150 MPa 

Modulus of Elasticity = 2.008 x 105 MPa 

Density = 7.85 kg/m
3
 

Length of the base member = 5 m 

Constraint Violation penalty constant 10 

Force on Joint 3 = 100 N 

Mutation rate = 2% 

Elitism = 10% 

 

The optimal solution came out to be: 
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Table 2 
Optimal Solution using Multi Point crossover. 

A1 (cm
2
) A2 (cm

2
) A3 (cm

2
) A4 (cm

2
) Weight(kg) 

3.4 2.4 2.4 2.8 753.6 

 

 
Fig. 9. Variation in number of generations to achieve optimal solution with population size using multi 

point crossover. 

In this we used multi-point crossover for the mating function by taking the elements – 1 to 5 and 

12 to 16 from the first parent and the elements 6 to 11 from the second parent to make the child 

chromosome. As we can see, when we used the Uniform crossover for various population sizes, 

the number of generations taken to achieve the optimal solution for the problem for different 

initial population sizes varies exponentially. As we go on decreasing the population size the 

number of generations increases first gradually then with a very quick pace. 

4.3. Using single point crossover 

Parameters used: 

Stress limit = 147.150 MPa 

Modulus of Elasticity = 2.008 x 105 MPa 

Density = 7.85 kg/m3 

Length of the base member = 5 m 

Constraint Violation penalty constant = 10 

Force on Joint 3 = 100 N 

Mutation rate = 2% 

Elitism = 10% 
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The optimal solution came out to be: 

Table 3 
Optimal Solution using Single Point crossover. 

A1 (cm
2
) A2 (cm

2
) A3 (cm

2
) A4 (cm

2
) Weight(kg) 

3.4 2.4 2.4 2.8 753.6 

 

 
Fig. 10. Variation in number of generations to achieve optimal solution with population size using single 

point crossover. 

In this we used single point crossover for the mating function by taking the elements – 1 to 8 

from the first parent and 8 to 16 from the second parent to make the child chromosome. As we 

can see, when we used the single point crossover for various population sizes, the number of 

generations taken to achieve the optimal solution for different initial population sizes varies 

exponentially. As we go on decreasing the population size the number of generations increases 

first gradually then with a very quick pace. 

4.4. Effects of increasing the rate of mutation 

In the above cases, we changed the crossover methods, keeping the mutation rate constant at 2%. 

In this section we’ll observe the change in the number of generations with increase in the rate of 

mutation, keeping the crossover method as Multi point crossover and population size constant at 

50. 
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Table 4 
Variation of number of generations to achieve optimal solution with rate of mutation. 

Rate of Mutation 2 5 10 20 

Number of Generations 117 92 92 147 

 

 
Fig. 11. Variation in number of generations to achieve optimal solution with rate of mutation. 

As we can see, the number of generations first decrease with increase in the mutation rate and as 

we go on increasing the rate of mutation, the number of generations start increasing as the 

randomness of the chromosomes of the offspring increases and this affects the algorithm in more 

negative ways than positive. Thus, slowing down the optimization process. 

5. Conclusions 

In this paper various GAs are used to solve the weight minimization problem for a simple truss 

consisted of steel members. . It is quite evident that GA is one of the best choices available for 

discrete optimization of structures or any other such cases because of its ease of application and 

performance. The application of genetic algorithm using binary encoding for our problem was 

very simple. 

As compared to continuous optimization, discrete optimization gave us results that are a lot more 

practical and ready to use as we choose amongst the options that are available in the market. The 

penalty-based transformation method (i.e., violation of normalized constraints-based 

formulation) which was used to transform our constraint problem into an unconstraint one 

(which resulted in the modified objective function for our problem) worked very well, which can 

be implied from the obtained results. The secondary aim was to explore the sensitivity of the 

Genetic Algorithm to the operator values used. Different variations of Genetic Algorithm (i.e., 
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different crossovers, different rate of mutation) were tried as a separate case and the effect of that 

can be seen in the results. All of them, however, resulted in same optimal values for the design of 

the structure i.e., cross-section of members and weight of the truss. For a large population size 

the differences in the speed of these methods are negligible, but at lower population size we can 

easily observe that the number of generations taken for obtaining optimized results was lowest in 

Single Point Cross-over followed by Multi Point and Uniform cross-over method which implies 

that Single Point Cross-over was fastest. 
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